U.S. Power Center, LLC

From the Community of Manufacturing, Design and Contracting Teams of U.S. Power Center, LLC

ACTION-ORIENTED PEARLS OF WISDOM FOR INDUSTRIAL MANAGERS AND CONTRACTORS
www.uspowercenter.com • 1963 Park Avenue • Twin Lake, Michigan 49457 • [email protected]

Maintenance Regime for Industrial Compressed Air Systems

The 3 kEys

  • Regularly implement leak detection programs using ultrasonic detectors or soapy water, as leaks can account for up to 30% of compressed air system energy consumption.
  • Ensure air treatment measures include proper filtration and drying to maintain clean, dry air.
  • Use synthetic lubricants, which can reduce energy consumption by 4% to 8% while enhancing performance.

 

Proper maintenance of industrial compressed air systems is essential for ensuring reliable operation, reducing energy costs, and prolonged lifespans of equipment. A well-maintained system minimizes downtime, prevents costly repairs, and maintains consistent air quality and pressure levels. Take a look at Compressed Air Best Practices for a number of maintenance-oriented reference materials we’ve found to be very helpful.

This guide outlines a relatively comprehensive maintenance regime categorized into daily, weekly, monthly, and annual tasks, focusing on best practices and strategies for optimizing system efficiency and performance.

Daily Maintenance Tasks

Daily maintenance plays a crucial role in identifying and addressing potential issues before they escalate.

Start by inspecting and recording system parameters, including pressure, temperature, and flow readings, to ensure they remain within specified ranges.

Pay attention to unusual noises or vibrations that may indicate mechanical issues in compressors and piping. Additionally, verify air quality at key usage points to confirm that filters and dryers are functioning correctly.

Weekly Maintenance Tasks

Weekly inspections provide a deeper evaluation of system components. Inspect piping and fittings for leaks, loose connections, or signs of corrosion. Visually inspect for leaks or damage, and inspect air lines for cracks or wear. Tighten fittings and connections. Replace seals and hoses as needed.

Check air filters for dirt and debris and clean or replace them as needed.

Examine belts and couplings to ensure proper tension and alignment, replacing them if there are signs of wear or damage.

Monitor compressor oil levels, topping up or replacing oil according to manufacturer recommendations, and check for contamination or wear. Test safety devices such as pressure relief valves and emergency stop buttons to ensure they are operational.

Regularly drain condensate from air receivers and drains, either manually or automatically, to prevent water accumulation and corrosion. Clean all surfaces to remove dirt and dust buildup.

Monthly Maintenance Tasks

Monthly tasks focus on ensuring the system’s overall performance and efficiency. Inspect the air dryer’s performance by verifying the dew point and checking for blockages. Test automatic drains to confirm they are functioning properly and effectively removing condensate.

Inspect electrical components, looking for loose wires, corrosion, or overheating in control panels and motor connections.

Lubricate moving parts, such as bearings, following the manufacturer’s guidelines.

Measure pressure drops across filters and replace them if pressure losses exceed acceptable limits. Change air filters and oil after 500 operating hours or monthly. Inspect for visible dirt or blockages. Note changes in oil color or consistency.

Quarterly Maintenance Tasks

Every quarter, conduct a full system leakage test to identify and repair air leaks, which can significantly improve energy efficiency.

Calibrate gauges and sensors to ensure accurate readings of pressure, temperature, and flow.

Inspect and clean heat exchangers to remove dirt and debris that may impair cooling performance. Verify the functionality of the cooling systems. Check coolant levels. Inspect the cooling fan and clean cooling fins.

Evaluate the system’s energy efficiency using data analysis to identify areas for improvement.

Optimize system pressure to maintain a maximum pressure loss of 10% from end to end, as excessive loss can increase energy consumption.

Annual Maintenance Tasks

Annual maintenance involves a comprehensive inspection of the entire system. Engage certified technicians to evaluate all components, including compressors, dryers, filters, and piping. Replace critical components such as seals, gaskets, or filters, as per manufacturer recommendations.

Inspect and clean storage tanks to remove sediment and check for corrosion or structural issues. Test system controls, including programmable logic controllers (PLCs) and automation systems, to ensure proper functionality.

Finally, update maintenance logs and documentation to keep a detailed record of all inspections, repairs, and replacements.

Additional Themes for Optimizing Compressed Air Systems

Implement strategies to enhance system efficiency, such as avoiding unnecessary pressure generation. For every 2 psi reduction, compressor energy consumption decreases by 1%.

Compartmentalize systems for varying pressure needs and use multiple smaller compressors for diverse requirements. Ensure pressure losses stay below 10%, and operate active compressors at full load while keeping one as load-following.

Adhering to a structured maintenance regime for industrial compressed air systems ensures reliable performance, energy efficiency, and extended equipment lifespan. Regular inspections, timely repairs, and meticulous record-keeping help organizations reduce operational costs and avoid unexpected downtime. Implementing strategies for leak management and system optimization fosters a safer, more sustainable, and cost-effective operation. Improving Compressed Air System Performance is the U.S. Dept. of Energy’s sourcebook for industry, developed by the Office of Energy Efficiency and Renewable Energy. It’s 100 pages of nuggets that every Facilities Manager should have in their toolkit, from geek to rookie.

Modern boilers are more efficient, converting fuel into heat energy with higher precision, thereby cutting fuel expenses by maximizing heat output from the energy input. And natural gas boilers tend to be more efficient than oil-fired ones due to cleaner combustion processes, plus the buyer has the additional benefit of natural gas being generally less expensive than electricity.

Did You Know ..?

U.S. Power Center offers buying group pricing. Commitments on behalf of the group are made once per quarter, and the more participants involved, the greater the equipment savings are. Let us know with a phone call to get in..

Boiler Efficiency

Boilers

Control Systems

Convection Section Walls

Efficiency Improvement Equipment

Stack Gas

Capacity Control Systems

Fan Performance

Process Compressors

Modern centrifugal fans are designed for high airflow rates and increased pressure, handling large volumes of air, making them suitable for various applications. Upgrading to energy-efficient electronically commutated fans reduces energy usage, as they eliminate drive losses by connecting the motor directly to the impeller, resulting in significant cost savings.

Reduce energy consumption by reducing the pressure and flow with smaller impellers. Add VFDs, as they alter the rotational speed of the motor per the application’s requirements. The head and flow sync with demand, reducing consumption by slowing down the motor speed.

Capacity Control Systems

Pump Performance

Air Compressor Types

Air Leaks

Air Receivers

Compressed Air Efficiency

Heat Recovery

Lubricants

Operating Modes

Piping

Power Draw

Staging Sequence

Storage Tanks

System Pressure

Rotary screw air compressors' popularity is due to their ability to run non-stop around the clock. As long as a screw-type air compressor is sized correctly, its efficiency is superior to other air compressors on the market. While oil-injected compressors require more routine maintenance, they’ll typically have a lower total cost of ownership as compared to an oil-free screw compressor.

Did You Know ..?

Rebates are available from your local company to incentivize the use of energy efficient power systems by covering portions of the cost of the project. We’ll apply for and administer those for you.

Cooling towers can lose efficiency as components begin to wear and performance decreases. Examples can be worn fan blades, deteriorated drift eliminators or plugged fill media. That combined with increased demand put on the tower by new process equipment can drive the cold water temperature well above the original design. Thermal upgrades on cooling towers can consist of larger mechanical equipment, better distribution systems and/or more efficient heat transfer media.

Did You Know ..?

We negotiate with cutting-edge technology  providers on behalf of our member companies, for power systems at significantly enhanced pricing. It's the classic result of when people pool individual demand to consolidate purchasing power, using the collective influence of aggressive midsized or smaller facilities currently being ignored.

Bleed

Condenser Water Reset

Cooling Tower Fill

Fans

Flow Patterns

Thermal Storage

Tower Water

Water Flow Rates

Load

Motor Selection

Sawduct Collection Systems

Today’s motors are energy efficient, with features like enhanced motor winding designs, optimized control algorithms, and energy recovery systems, all resulting in significant energy savings. And newer motors frequently include improved control algorithms and higher-resolution feedback devices, allowing for even finer precision control over older types, leading to tighter tolerances and higher product quality.

Upgraded heat exchangers make a difference in terms of efficiency, with power and torque gains the most notable benefit. The cooler and denser air provided to the combustion chamber as a result of upgraded exchangers allows for better combustion, which can lead to an increase of as much as 25 horsepower and 15 lb-ft of torque. Heat soak is also improved, which is when the engine’s intake air temperatures reach a high level, decreasing the performance of the engine.

Did You Know ..?

We partner with the U.S. Dept. of Energy, providing funding for innovative technologies and deployment into manufacturing - just for firms with less than $100m in annual sales. We apply for, pull in, and administer those on your behalf.

Bundle Replacement

Combustion Gas Temperature

Extended Surfaces

Heat Recovery Equipment

Inserts

Instrumentation & Control

Measuring Heat Recovery Opportunities

Surface Treatment

Turbine-driven Feedwater Pumps

Automation & Control

Closed-loop Heat Pumps

Damper Economizer Control

Heat Pipes

Heat Recovery

Infrared Radiant Heaters

Latent & Sensible Heat

Operating Time Management

Sensors

Set Points

Supply Air Temperature Control

Thermal Storage

Variable Air Volume System (VAV)

Variable Frequency Drives

Heating, Ventilation and Air Conditioning can consume as much as half of an industrial building’s annual energy, and system inefficiencies can cause thousands of dollars per year in unnecessary expense. Newer HVAC systems operate at an increased performance level, and upgraded systems typically distribute air more evenly. Balanced air results in fewer hot and cold patches. In addition, today’s advanced controls create significant value for industry, enabling a comprehensive approach across people, processes, and a variety of technologies.

Did You Know ..?

The company submits applications for federal Rural Energy Grants, leveraging your industrial power equipment. If you’re in a rural town, we’ll  develop your application, and take it through the process..

How About This ..?

Are you aware of 0% 3rd party shared savings programs? Become a member of our buying group, receive funding easily for your project, and pay it back over time out of the savings generated. Become a member.

Whether it be manufacturing, food processing, power generation, or the stabilization and control of temperatures, thermal insulation solutions play a critical role in the today’s industrial space. Pipes, tanks and vessels, ovens and kilns, chimneys, ductwork, and boilers are just a few examples of ways in which energy consumption can be reduced through the use of insulation.

Body Heat

Conduction

Heat Loss & Heat Gain

Infiltration & Exfiltration

Insulation Economics

Insulation Types

Computer Equipment

Control Strategies

Imaging Equipment

Lighting Fixtures

Plug Loads

Server Rooms

LED lighting offers a positive return on investment that is significant, as it’s not uncommon at all for a retrofit to realize a simple payback of less than two years. Occupant well-being is enhanced given the better-quality illumination, and when people are well they’re productive. Additional efficiency can be garnered with controls that coordinate not only the lighting system, but plug loads as well.

Commonly used to process hydrocarbon feeds, and they often also include convection banks that produce steam. Consider increasing furnace capacity by unit, with fewer furnaces for maximum efficiency. Strategies should involve the use of refractory and insulation to minimize heat loss, limiting air infiltration to the furnace and/or maintaining good control of excess oxygen.

Burners

Convection Section Walls

Instrumentation

Radiant Coils

Radiant Section Walls

Stack Gases

Automation Packages

Equipment

Operations

Systems

Types

Replacing large, central-chiller-plant equipment is generally a a question of cost, risk, reliability, and anticipated energy savings. But new machines offer features beyond energy savings that include VFDs for better part-load operation and more stable water temperatures, easier operator interface and controls. And the chillers can have smaller footprints, freeing up floor space.

Steam systems account for about 30% of the total energy used in industrial applications for product output. These systems can be indispensable in delivering the energy needed for process heating, pressure control, mechanical drives, separation of components, and production of hot water for process reactions. Repairing steam leaks, minimizing vented steam, ensuring that piping, valves, fittings, and vessels are well insulated, and ensuring that steam traps are well-maintained all can increase energy efficiency in your plant.

Did You Know ..?

Significant tax deductions exist for installing energy-efficient systems in industrial buildings, and these can be claimed by building owners or tenants who make these improvements  to their operations. We assist members with this deduction.

How About This ..?

We’re a performance contractor. A performance contract is an agreement between a building owner / tenant and a contractor. We’ll design and install your power system, guaranteeing its performance.

Applications

Condensate Heat Recovery

Deaerator Steam

Hot Water Distribution

Radiant Section Walls

Instrumentation & Control

Insulation

Venting

Waste Heat Recovery

Cold Trap Diagnosis

Steam Trap Types

Steam Leaks

Steam Trap Diagnostics

Steam Trap Sizing

Steam traps fail through either the leakage of steam, or drainage, in which the flow of condensate is blocked, preventing the removal or draining of condensate from the system. Failure rates can be high, and if left unattended a population of steam traps can easily have between 20 and 40% in a failed condition.

Whether you need to upgrade distribution mains, treatment systems, wells, pumps and controls, replace lead service lines or increase elevated or ground storage capacity, we assist Facilities Managers through every stage of the process.

Call Us.

In short, we enhance your system’s capabilities
and the integration of subsystem elements to make
all of it work more efficiently, utilizing fewer resources.

Water Flow

Chilled Water & Condenser Systems

Constant Volume Pumps

Pressure Drop

System Balance

Modern boilers are more efficient, converting fuel into heat energy with higher precision, thereby cutting fuel expenses by maximizing heat output from the energy input. And natural gas boilers tend to be more efficient than oil-fired ones due to cleaner combustion processes, plus the buyer has the additional benefit of natural gas being generally less expensive than electricity.

Boiler Efficiency

Boilers

Control Systems

Convection Section Walls

Efficiency Improvement Equipment

Stack Gas

Did You Know ..?

U.S. Power Center offers buying group pricing. Commitments on behalf of the group are made once per quarter, and the more participants involved, the greater the equipment savings are. Let us know with a phone call to get in ..

Modern centrifugal fans are designed for high airflow rates and increased pressure, handling large volumes of air, making them suitable for various applications. Upgrading to energy-efficient electronically commutated fans reduces energy usage, as they eliminate drive losses by connecting the motor directly to the impeller, resulting in significant cost savings.

Capacity Control Systems

Fan Performance

Process Compressors

Reduce energy consumption by reducing the pressure and flow with smaller impellers. Add VFDs, as they alter the rotational speed of the motor per the application’s requirements. The head and flow sync with demand, reducing consumption by slowing down the motor speed.

Capacity Control Systems

Pump Performance

Rotary screw air compressors' popularity is due to their ability to run non-stop around the clock. As long as a screw-type air compressor is sized correctly, its efficiency is superior to other air compressors on the market. While oil-injected compressors require more routine maintenance, they’ll typically have a lower total cost of ownership as compared to an oil-free screw compressor.

Air Compressor Types

Air Leaks

Air Receivers

Compressed Air Efficiency

Heat Recovery

Lubricants

Operating Modes

Piping

Power Draw

Staging Sequence

Storage Tanks

System Pressure

Did You Know ..?

Rebates are available from your local company to incentivize the use of energy efficient power systems by covering portions of the cost of the project. We’ll apply for and administer those for you.

Cooling towers can lose efficiency as components begin to wear and performance decreases. Examples can be worn fan blades, deteriorated drift eliminators or plugged fill media. That combined with increased demand put on the tower by new process equipment can drive the cold water temperature well above the original design. Thermal upgrades on cooling towers can consist of larger mechanical equipment, better distribution systems and/or more efficient heat transfer media.

Bleed

Condenser Water Reset

Cooling Tower Fill

Flow Patterns

Thermal Storage

Tower Water

Water Flow Rates

Did You Know ..?

We negotiate with cutting-edge technology  providers on behalf of our member companies, for power systems at significantly enhanced pricing. It's the classic result of when people pool individual demand to consolidate purchasing power, using the collective influence of aggressive midsized or smaller facilities currently being ignored.

Today’s motors are energy efficient, with features like enhanced motor winding designs, optimized control algorithms, and energy recovery systems, all resulting in significant energy savings. And newer motors frequently include improved control algorithms and higher-resolution feedback devices, allowing for even finer precision control over older types, leading to tighter tolerances and higher product quality.

Load

Motor Selection

Sawduct Collection Systems

Upgraded heat exchangers make a difference in terms of efficiency, with power and torque gains the most notable benefit. The cooler and denser air provided to the combustion chamber as a result of upgraded exchangers allows for better combustion, which can lead to an increase of as much as 25 horsepower and 15 lb-ft of torque. Heat soak is also improved, which is when the engine’s intake air temperatures reach a high level, decreasing the performance of the engine.

Bundle Replacement

Combustion Gas Temperature

Extended Surfaces

Heat Recovery Equipment

Inserts

Instrumentation & Control

Measuring Heat Recovery Opportunities

Surface Treatment

Turbine-driven Feedwater Pumps

Did You Know ..?

We partner with the U.S. Dept. of Energy, providing funding for innovative technologies and deployment into manufacturing - just for firms with less than $100m in annual sales. We apply for, pull in, and administer those on your behalf.

Heating, Ventilation and Air Conditioning can consume as much as half of an industrial building’s annual energy, and system inefficiencies can cause thousands of dollars per year in unnecessary expense. Newer HVAC systems operate at an increased performance level, and upgraded systems typically distribute air more evenly. Balanced air results in fewer hot and cold patches. In addition, today’s advanced controls create significant value for industry, enabling a comprehensive approach across people, processes, and a variety of technologies.

Automation & Control

Closed-loop Heat Pumps

Damper Economizer Control

Heat Pipes

Heat Recovery

Infrared Radiant Heaters

Latent & Sensible Heat

Operating Time Management

Sensors

Set Points

Supply Air Temperature Control

Thermal Storage

Variable Air Volume System (VAV)

Variable Frequency Drives

Did You Know ..?

The company submits applications for federal Rural Energy Grants, leveraging your industrial power equipment. If you’re in a rural town, we’ll  develop your application, and take it through the process.

Whether it be manufacturing, food processing, power generation, or the stabilization and control of temperatures, thermal insulation solutions play a critical role in the today’s industrial space. Pipes, tanks and vessels, ovens and kilns, chimneys, ductwork, and boilers are just a few examples of ways in which energy consumption can be reduced through the use of insulation.

Body Heat

Conduction

Heat Loss & Heat Gain

Infiltration & Exfiltration

Insulation Economics

Insulation Types

LED lighting offers a positive return on investment that is significant, as it’s not uncommon at all for a retrofit to realize a simple payback of less than two years. Occupant well-being is enhanced given the better-quality illumination, and when people are well they’re productive. Additional efficiency can be garnered with controls that coordinate not only the lighting system, but plug loads as well.

Computer Equipment

Control Strategies

Imaging Equipment

Lighting Fixtures

Plug Loads

Server Rooms

Commonly used to process hydrocarbon feeds, and they often also include convection banks that produce steam. Consider increasing furnace capacity by unit, with fewer furnaces for maximum efficiency. Strategies should involve the use of refractory and insulation to minimize heat loss, limiting air infiltration to the furnace and/or maintaining good control of excess oxygen.

Burners

Convection Section Walls

Instrumentation

Radiant Coils

Radiant Section Walls

Stack Gases

Refrigeration & Chillers

Replacing large, central-chiller-plant equipment is generally a a question of cost, risk, reliability, and anticipated energy savings. But new machines offer features beyond energy savings that include VFDs for better part-load operation and more stable water temperatures, easier operator interface and controls. And the chillers can have smaller footprints, freeing up floor space.

Automation Packages

Equipment

Operations

Systems

Types

Steam systems account for about 30% of the total energy used in industrial applications for product output. These systems can be indispensable in delivering the energy needed for process heating, pressure control, mechanical drives, separation of components, and production of hot water for process reactions. Repairing steam leaks, minimizing vented steam, ensuring that piping, valves, fittings, and vessels are well insulated, and ensuring that steam traps are well-maintained all can increase energy efficiency in your plant.

Applications

Condensate Heat Recovery

Deaerator Steam

Hot Water Distribution

Radiant Section Walls

Instrumentation & Control

Insulation

Venting

Waste Heat Recovery

Did You Know ..?

Significant tax deductions exist for installing energy-efficient systems in industrial buildings, and these can be claimed by building owners or tenants who make these improvements  to their operations. We assist members with this deduction.

Steam traps fail through either the leakage of steam, or drainage, in which the flow of condensate is blocked, preventing the removal or draining of condensate from the system. Failure rates can be high, and if left unattended a population of steam traps can easily have between 20 and 40% in a failed condition.

Cold Trap Diagnosis

Steam Trap Types

Steam Leaks

Steam Trap Diagnostics

Steam Trap Sizing

Whether you need to upgrade distribution mains, treatment systems, wells, pumps and controls, replace lead service lines or increase elevated or ground storage capacity, we assist Facilities Managers through every stage of the process.

Water Flow

Chilled Water & Condenser Systems

Constant Volume Pumps

Pressure Drop

System Balance

Call Us.

In short, we enhance your system’s capabilities
and the integration of subsystem elements to make
all of it work more efficiently, utilizing fewer resources.

U.S. Power is an industrial energy services company that specializes in the reduction of energy consumption across a broad array of manufacturing and food processing facilities located in Michigan, Ohio, Indiana, Illinois and Wisconsin. In addition, the company publishes a useful curation of power-oriented information from the marketplace, and consolidates it into this concise, twice per month letter known as The Fabulous Power Maven, distributed to Facilities Managers throughout the nation.

While the company prides itself in its diversity, it owns and operates a niche power contracting firm as well, known as U.S. Power Center, LLC. With a core business in and around industrial power equipment, our specialty is in providing, installing and optimizing a full range of state-of-the-art systems, including onsite generation.

The Maven publishes these pearls weekly, or more frequently if we feel like it, because we believe America is already great, and poised to be even greater if we commit to doing our part towards cooling the planet. Publisher Ron Motsch can be reached at (616) 570-9319.

Discover Our

Family of Brands

Our power letter, full of pearls of wisdom from years of contracting experiences, by and for Building Managers and Industrial Contractors.

A searchable database of power and controls resources we’ve either created from within, published from our subscribers, or curated from around The Internet.

Our industrial contracting firm, building, deploying, and managing a suite of the most productive and admired power performance technologies on Earth.

YOUR MORNING GRIN

Ooh, baby, baby it’s a wild world. 
It’s hard to get by, just upon a smile. 

 

You need power. 

 

Ron Motsch
(616) 570-9319

Building and Managing a Suite of
The Most Productive and Admired
Industrial Power Systems on Earth

Power Topics

Subscribe to
The Fabulous Power Maven