U.S. Power Center, LLC

From the Community of Manufacturing, Design and Contracting Teams of U.S. Power Center, LLC

ACTION-ORIENTED PEARLS OF WISDOM FOR INDUSTRIAL MANAGERS AND CONTRACTORS
www.uspowercenter.com • 1963 Park Avenue • Twin Lake, Michigan 49457 • [email protected]

Maximizing Cooling Tower Efficiency: How Fans and Pumps Can Cut Energy Costs

The 3 kEys

  • Variable frequency drives (VFDs) allow fans to adjust their speed based on real-time cooling needs, and can reduce energy use by over 80% when fan speed is lowered by 50%.
  • Implementing variable speed pumping to reduce energy consumption as much as 45%, simply by allowing pumps to match flow rates to cooling demand.
  • Legacy cooling systems that rely on DC-driven motors may also utilize DC-based VSDs rather than AC-based VFDs. In these cases, a DC VSD helps regulate motor speed while maintaining compatibility with existing infrastructure, avoiding costly upgrades to an entirely new AC-driven system.

Cooling towers are essential to industrial and food processing operations, providing critical heat rejection to maintain system performance. However, they are often among the most energy-intensive components in a facility, consuming excessive electricity due to outdated technology, inefficient operation, and poor maintenance practices.

By optimizing the way fans and pumps operate, businesses can dramatically reduce energy waste, lower costs, and extend equipment life without compromising performance. The key lies in understanding how these components interact with airflow, water movement, and temperature control—and implementing smarter solutions that dynamically adjust to real-world cooling demands.

The Power of Fans, a Smarter Approach to Airflow

Cooling tower fans are the driving force behind heat dissipation, but traditional fixed-speed fans often run at full speed regardless of cooling demand, leading to unnecessary energy consumption. This is where variable frequency drives (VFDs) come into play. By allowing fans to adjust their speed based on real-time cooling needs, VFDs can reduce energy use by over 80% when fan speed is lowered by 50%.

A study by the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) found that an industrial plant in Texas running its cooling tower fans at full speed year-round significantly reduced its energy use after installing VFDs, cutting fan-related energy consumption by 60% while maintaining the same cooling effectiveness.

Beyond speed control, fan blade design also plays a crucial role. Advances in aerodynamics have led to hollow-core and composite fan blades that reduce weight while improving airflow efficiency, reducing energy consumption and motor strain. Additionally, maintaining unobstructed airflow—by keeping air intake screens clean and optimizing fan shroud design—helps eliminate inefficiencies caused by recirculating hot air: Midwest Machinery Replaces a Cooling Tower for Bayer Crop Science.

For food processing plants, where strict temperature control is critical, these enhancements lead to more stable cooling, reduced mechanical wear, and lower maintenance costs.

The Role of Pumps, Controlling Water Flow for Maximum Efficiency

While fans manage airflow, pumps regulate water movement, ensuring proper heat transfer. In many cooling systems, pumps are oversized or run continuously at maximum speed, even when full flow isn’t required. The

result? Wasted energy and unnecessary strain on equipment. The U.S. Department of Energy provides a great primer, found here: Cooling Towers: Understanding Key Companents of Cooling Towers and How to Improve Water Efficiency.

A case study from the Hydraulic Institute found that a beverage manufacturing plant in the Midwest significantly cut energy costs by implementing variable speed pumping. The company reduced its pump energy consumption by 45% within the first year, simply by allowing the pumps to match flow rates to cooling demand instead of running at full capacity.

Water distribution is key to efficient cooling. Using high-performance nozzles that evenly distribute water across the fill media improves evaporation rates and overall cooling efficiency. Similarly, keeping fill media clean and free of scaling or fouling ensures optimal heat transfer. Studies have shown that biofilm buildup in cooling tower fill can reduce heat exchange efficiency by up to 40%, leading to increased fan and pump workload.

Water quality management also plays a significant role in pump efficiency. When scaling, corrosion, or biological growth develops, pumps must work harder to maintain flow rates, increasing energy use. Implementing side-stream filtration and controlled chemical dosing prevents these issues, leading to lower operating costs and extended equipment life.

The Role of Variable Speed Drives (VSDs) in Cooling Towers

One of the most common yet overlooked inefficiencies in cooling tower operations is over-pumping. Many facilities operate pumps at constant speeds, even when cooling demand fluctuates, resulting in excessive water circulation, increased energy use, and unnecessary mechanical strain.

A study by the U.S. Department of Energy found that variable speed drives (VSDs) on pumps can reduce energy consumption by 30-50% by adjusting water flow to match real-time demand (DOE Energy Efficiency Guide).

Consider a chemical processing plant in Louisiana that relied on constant-speed pumps, leading to excessive water movement through its cooling towers. After installing VSDs and implementing flow monitoring, the facility reduced its pump energy use by 45% while maintaining the same cooling capacity. The reduction in water flow also lowered wear and tear on pump components, extending their lifespan and decreasing maintenance costs.

While Variable Frequency Drives (VFDs) are the dominant technology for controlling cooling tower fans and pumps, Variable Speed Drives (VSDs) encompass a broader range of speed control methods. In some cooling tower applications, mechanical VSDs, such as hydraulic variable speed couplings, are used instead of electronic VFDs. These hydraulic couplings allow for smoother mechanical adjustments to fan and pump speeds without relying on frequency variation, making them a viable alternative in certain industrial settings.

Legacy cooling systems that rely on DC-driven motors may also utilize DC-based VSDs rather than AC-based VFDs. In these cases, a DC VSD helps regulate motor speed while maintaining compatibility with existing infrastructure, avoiding costly upgrades to an entirely new AC-driven system. Another emerging alternative is the direct drive motor technology, particularly in systems that incorporate permanent magnet synchronous motors (PMSMs). These motors often employ non-VFD VSDs to manage speed, providing efficient control while eliminating some of the mechanical losses associated with traditional belt-driven designs.

One of the biggest advantages of VSDs in cooling towers is their flexibility across different motor types. Unlike VFDs, which are primarily designed for AC motor speed control, VSDs can regulate both AC and DC motors, as

well as mechanical and hydraulic speed control systems. This versatility makes them an attractive option for older cooling tower systems that may not be compatible with VFD technology. Facilities with aging infrastructure often find VSDs particularly useful when retrofitting legacy equipment that lacks the electrical compatibility to support modern VFD installations.

For cooling towers operating with DC motors, mechanical drive couplings, or alternative speed control methods, VSDs provide a practical solution for enhancing efficiency without the need for a full system overhaul. While they may not offer the same precision and energy savings as VFDs, they remain a valuable tool in specialized or legacy applications where electronic frequency control is not feasible.

AI-Driven Optimization, the Future of Cooling Efficiency

As industries move toward automation, AI and machine learning are transforming cooling tower operations. By continuously analyzing temperature, humidity, and load requirements, AI-driven fan and pump controls can make real-time adjustments to optimize performance.

A food processing facility in California recently integrated an AI-powered cooling management system. Within six months, the company reduced energy use by 35%, as the AI dynamically adjusted fan and pump speeds based on outdoor temperature, production load, and water conditions. The system also provided predictive maintenance alerts, preventing costly breakdowns and extending equipment life.

This level of automation not only cuts energy costs but also improves reliability and sustainability, making AI an increasingly attractive solution for industries reliant on large-scale cooling systems.

The Big Finish

Cooling towers are indispensable in industrial settings, yet their potential for efficiency improvements is often underappreciated. Simple strategies such as routine maintenance, implementing variable speed drives, and maintaining proper water quality can result in significant cost savings and enhanced performance. By taking a proactive approach to optimization, facilities can reduce operating costs, extend equipment lifespan, and improve overall cooling system efficiency. The key to success lies in continuous monitoring and adjustments that align cooling tower operation with actual demand, ensuring optimal performance year-round.

Modern boilers are more efficient, converting fuel into heat energy with higher precision, thereby cutting fuel expenses by maximizing heat output from the energy input. And natural gas boilers tend to be more efficient than oil-fired ones due to cleaner combustion processes, plus the buyer has the additional benefit of natural gas being generally less expensive than electricity.

Did You Know ..?

U.S. Power Center offers buying group pricing. Commitments on behalf of the group are made once per quarter, and the more participants involved, the greater the equipment savings are. Let us know with a phone call to get in..

Boiler Efficiency

Boilers

Control Systems

Convection Section Walls

Efficiency Improvement Equipment

Stack Gas

Capacity Control Systems

Fan Performance

Process Compressors

Modern centrifugal fans are designed for high airflow rates and increased pressure, handling large volumes of air, making them suitable for various applications. Upgrading to energy-efficient electronically commutated fans reduces energy usage, as they eliminate drive losses by connecting the motor directly to the impeller, resulting in significant cost savings.

Reduce energy consumption by reducing the pressure and flow with smaller impellers. Add VFDs, as they alter the rotational speed of the motor per the application’s requirements. The head and flow sync with demand, reducing consumption by slowing down the motor speed.

Capacity Control Systems

Pump Performance

Air Compressor Types

Air Leaks

Air Receivers

Compressed Air Efficiency

Heat Recovery

Lubricants

Operating Modes

Piping

Power Draw

Staging Sequence

Storage Tanks

System Pressure

Rotary screw air compressors' popularity is due to their ability to run non-stop around the clock. As long as a screw-type air compressor is sized correctly, its efficiency is superior to other air compressors on the market. While oil-injected compressors require more routine maintenance, they’ll typically have a lower total cost of ownership as compared to an oil-free screw compressor.

Did You Know ..?

Rebates are available from your local company to incentivize the use of energy efficient power systems by covering portions of the cost of the project. We’ll apply for and administer those for you.

Cooling towers can lose efficiency as components begin to wear and performance decreases. Examples can be worn fan blades, deteriorated drift eliminators or plugged fill media. That combined with increased demand put on the tower by new process equipment can drive the cold water temperature well above the original design. Thermal upgrades on cooling towers can consist of larger mechanical equipment, better distribution systems and/or more efficient heat transfer media.

Did You Know ..?

We negotiate with cutting-edge technology  providers on behalf of our member companies, for power systems at significantly enhanced pricing. It's the classic result of when people pool individual demand to consolidate purchasing power, using the collective influence of aggressive midsized or smaller facilities currently being ignored.

Bleed

Condenser Water Reset

Cooling Tower Fill

Fans

Flow Patterns

Thermal Storage

Tower Water

Water Flow Rates

Load

Motor Selection

Sawduct Collection Systems

Today’s motors are energy efficient, with features like enhanced motor winding designs, optimized control algorithms, and energy recovery systems, all resulting in significant energy savings. And newer motors frequently include improved control algorithms and higher-resolution feedback devices, allowing for even finer precision control over older types, leading to tighter tolerances and higher product quality.

Upgraded heat exchangers make a difference in terms of efficiency, with power and torque gains the most notable benefit. The cooler and denser air provided to the combustion chamber as a result of upgraded exchangers allows for better combustion, which can lead to an increase of as much as 25 horsepower and 15 lb-ft of torque. Heat soak is also improved, which is when the engine’s intake air temperatures reach a high level, decreasing the performance of the engine.

Did You Know ..?

We partner with the U.S. Dept. of Energy, providing funding for innovative technologies and deployment into manufacturing - just for firms with less than $100m in annual sales. We apply for, pull in, and administer those on your behalf.

Bundle Replacement

Combustion Gas Temperature

Extended Surfaces

Heat Recovery Equipment

Inserts

Instrumentation & Control

Measuring Heat Recovery Opportunities

Surface Treatment

Turbine-driven Feedwater Pumps

Automation & Control

Closed-loop Heat Pumps

Damper Economizer Control

Heat Pipes

Heat Recovery

Infrared Radiant Heaters

Latent & Sensible Heat

Operating Time Management

Sensors

Set Points

Supply Air Temperature Control

Thermal Storage

Variable Air Volume System (VAV)

Variable Frequency Drives

Heating, Ventilation and Air Conditioning can consume as much as half of an industrial building’s annual energy, and system inefficiencies can cause thousands of dollars per year in unnecessary expense. Newer HVAC systems operate at an increased performance level, and upgraded systems typically distribute air more evenly. Balanced air results in fewer hot and cold patches. In addition, today’s advanced controls create significant value for industry, enabling a comprehensive approach across people, processes, and a variety of technologies.

Did You Know ..?

The company submits applications for federal Rural Energy Grants, leveraging your industrial power equipment. If you’re in a rural town, we’ll  develop your application, and take it through the process..

How About This ..?

Are you aware of 0% 3rd party shared savings programs? Become a member of our buying group, receive funding easily for your project, and pay it back over time out of the savings generated. Become a member.

Whether it be manufacturing, food processing, power generation, or the stabilization and control of temperatures, thermal insulation solutions play a critical role in the today’s industrial space. Pipes, tanks and vessels, ovens and kilns, chimneys, ductwork, and boilers are just a few examples of ways in which energy consumption can be reduced through the use of insulation.

Body Heat

Conduction

Heat Loss & Heat Gain

Infiltration & Exfiltration

Insulation Economics

Insulation Types

Computer Equipment

Control Strategies

Imaging Equipment

Lighting Fixtures

Plug Loads

Server Rooms

LED lighting offers a positive return on investment that is significant, as it’s not uncommon at all for a retrofit to realize a simple payback of less than two years. Occupant well-being is enhanced given the better-quality illumination, and when people are well they’re productive. Additional efficiency can be garnered with controls that coordinate not only the lighting system, but plug loads as well.

Commonly used to process hydrocarbon feeds, and they often also include convection banks that produce steam. Consider increasing furnace capacity by unit, with fewer furnaces for maximum efficiency. Strategies should involve the use of refractory and insulation to minimize heat loss, limiting air infiltration to the furnace and/or maintaining good control of excess oxygen.

Burners

Convection Section Walls

Instrumentation

Radiant Coils

Radiant Section Walls

Stack Gases

Automation Packages

Equipment

Operations

Systems

Types

Replacing large, central-chiller-plant equipment is generally a a question of cost, risk, reliability, and anticipated energy savings. But new machines offer features beyond energy savings that include VFDs for better part-load operation and more stable water temperatures, easier operator interface and controls. And the chillers can have smaller footprints, freeing up floor space.

Steam systems account for about 30% of the total energy used in industrial applications for product output. These systems can be indispensable in delivering the energy needed for process heating, pressure control, mechanical drives, separation of components, and production of hot water for process reactions. Repairing steam leaks, minimizing vented steam, ensuring that piping, valves, fittings, and vessels are well insulated, and ensuring that steam traps are well-maintained all can increase energy efficiency in your plant.

Did You Know ..?

Significant tax deductions exist for installing energy-efficient systems in industrial buildings, and these can be claimed by building owners or tenants who make these improvements  to their operations. We assist members with this deduction.

How About This ..?

We’re a performance contractor. A performance contract is an agreement between a building owner / tenant and a contractor. We’ll design and install your power system, guaranteeing its performance.

Applications

Condensate Heat Recovery

Deaerator Steam

Hot Water Distribution

Radiant Section Walls

Instrumentation & Control

Insulation

Venting

Waste Heat Recovery

Cold Trap Diagnosis

Steam Trap Types

Steam Leaks

Steam Trap Diagnostics

Steam Trap Sizing

Steam traps fail through either the leakage of steam, or drainage, in which the flow of condensate is blocked, preventing the removal or draining of condensate from the system. Failure rates can be high, and if left unattended a population of steam traps can easily have between 20 and 40% in a failed condition.

Whether you need to upgrade distribution mains, treatment systems, wells, pumps and controls, replace lead service lines or increase elevated or ground storage capacity, we assist Facilities Managers through every stage of the process.

Call Us.

In short, we enhance your system’s capabilities
and the integration of subsystem elements to make
all of it work more efficiently, utilizing fewer resources.

Water Flow

Chilled Water & Condenser Systems

Constant Volume Pumps

Pressure Drop

System Balance

Modern boilers are more efficient, converting fuel into heat energy with higher precision, thereby cutting fuel expenses by maximizing heat output from the energy input. And natural gas boilers tend to be more efficient than oil-fired ones due to cleaner combustion processes, plus the buyer has the additional benefit of natural gas being generally less expensive than electricity.

Boiler Efficiency

Boilers

Control Systems

Convection Section Walls

Efficiency Improvement Equipment

Stack Gas

Did You Know ..?

U.S. Power Center offers buying group pricing. Commitments on behalf of the group are made once per quarter, and the more participants involved, the greater the equipment savings are. Let us know with a phone call to get in ..

Modern centrifugal fans are designed for high airflow rates and increased pressure, handling large volumes of air, making them suitable for various applications. Upgrading to energy-efficient electronically commutated fans reduces energy usage, as they eliminate drive losses by connecting the motor directly to the impeller, resulting in significant cost savings.

Capacity Control Systems

Fan Performance

Process Compressors

Reduce energy consumption by reducing the pressure and flow with smaller impellers. Add VFDs, as they alter the rotational speed of the motor per the application’s requirements. The head and flow sync with demand, reducing consumption by slowing down the motor speed.

Capacity Control Systems

Pump Performance

Rotary screw air compressors' popularity is due to their ability to run non-stop around the clock. As long as a screw-type air compressor is sized correctly, its efficiency is superior to other air compressors on the market. While oil-injected compressors require more routine maintenance, they’ll typically have a lower total cost of ownership as compared to an oil-free screw compressor.

Air Compressor Types

Air Leaks

Air Receivers

Compressed Air Efficiency

Heat Recovery

Lubricants

Operating Modes

Piping

Power Draw

Staging Sequence

Storage Tanks

System Pressure

Did You Know ..?

Rebates are available from your local company to incentivize the use of energy efficient power systems by covering portions of the cost of the project. We’ll apply for and administer those for you.

Cooling towers can lose efficiency as components begin to wear and performance decreases. Examples can be worn fan blades, deteriorated drift eliminators or plugged fill media. That combined with increased demand put on the tower by new process equipment can drive the cold water temperature well above the original design. Thermal upgrades on cooling towers can consist of larger mechanical equipment, better distribution systems and/or more efficient heat transfer media.

Bleed

Condenser Water Reset

Cooling Tower Fill

Flow Patterns

Thermal Storage

Tower Water

Water Flow Rates

Did You Know ..?

We negotiate with cutting-edge technology  providers on behalf of our member companies, for power systems at significantly enhanced pricing. It's the classic result of when people pool individual demand to consolidate purchasing power, using the collective influence of aggressive midsized or smaller facilities currently being ignored.

Today’s motors are energy efficient, with features like enhanced motor winding designs, optimized control algorithms, and energy recovery systems, all resulting in significant energy savings. And newer motors frequently include improved control algorithms and higher-resolution feedback devices, allowing for even finer precision control over older types, leading to tighter tolerances and higher product quality.

Load

Motor Selection

Sawduct Collection Systems

Upgraded heat exchangers make a difference in terms of efficiency, with power and torque gains the most notable benefit. The cooler and denser air provided to the combustion chamber as a result of upgraded exchangers allows for better combustion, which can lead to an increase of as much as 25 horsepower and 15 lb-ft of torque. Heat soak is also improved, which is when the engine’s intake air temperatures reach a high level, decreasing the performance of the engine.

Bundle Replacement

Combustion Gas Temperature

Extended Surfaces

Heat Recovery Equipment

Inserts

Instrumentation & Control

Measuring Heat Recovery Opportunities

Surface Treatment

Turbine-driven Feedwater Pumps

Did You Know ..?

We partner with the U.S. Dept. of Energy, providing funding for innovative technologies and deployment into manufacturing - just for firms with less than $100m in annual sales. We apply for, pull in, and administer those on your behalf.

Heating, Ventilation and Air Conditioning can consume as much as half of an industrial building’s annual energy, and system inefficiencies can cause thousands of dollars per year in unnecessary expense. Newer HVAC systems operate at an increased performance level, and upgraded systems typically distribute air more evenly. Balanced air results in fewer hot and cold patches. In addition, today’s advanced controls create significant value for industry, enabling a comprehensive approach across people, processes, and a variety of technologies.

Automation & Control

Closed-loop Heat Pumps

Damper Economizer Control

Heat Pipes

Heat Recovery

Infrared Radiant Heaters

Latent & Sensible Heat

Operating Time Management

Sensors

Set Points

Supply Air Temperature Control

Thermal Storage

Variable Air Volume System (VAV)

Variable Frequency Drives

Did You Know ..?

The company submits applications for federal Rural Energy Grants, leveraging your industrial power equipment. If you’re in a rural town, we’ll  develop your application, and take it through the process.

Whether it be manufacturing, food processing, power generation, or the stabilization and control of temperatures, thermal insulation solutions play a critical role in the today’s industrial space. Pipes, tanks and vessels, ovens and kilns, chimneys, ductwork, and boilers are just a few examples of ways in which energy consumption can be reduced through the use of insulation.

Body Heat

Conduction

Heat Loss & Heat Gain

Infiltration & Exfiltration

Insulation Economics

Insulation Types

LED lighting offers a positive return on investment that is significant, as it’s not uncommon at all for a retrofit to realize a simple payback of less than two years. Occupant well-being is enhanced given the better-quality illumination, and when people are well they’re productive. Additional efficiency can be garnered with controls that coordinate not only the lighting system, but plug loads as well.

Computer Equipment

Control Strategies

Imaging Equipment

Lighting Fixtures

Plug Loads

Server Rooms

Commonly used to process hydrocarbon feeds, and they often also include convection banks that produce steam. Consider increasing furnace capacity by unit, with fewer furnaces for maximum efficiency. Strategies should involve the use of refractory and insulation to minimize heat loss, limiting air infiltration to the furnace and/or maintaining good control of excess oxygen.

Burners

Convection Section Walls

Instrumentation

Radiant Coils

Radiant Section Walls

Stack Gases

Refrigeration & Chillers

Replacing large, central-chiller-plant equipment is generally a a question of cost, risk, reliability, and anticipated energy savings. But new machines offer features beyond energy savings that include VFDs for better part-load operation and more stable water temperatures, easier operator interface and controls. And the chillers can have smaller footprints, freeing up floor space.

Automation Packages

Equipment

Operations

Systems

Types

Steam systems account for about 30% of the total energy used in industrial applications for product output. These systems can be indispensable in delivering the energy needed for process heating, pressure control, mechanical drives, separation of components, and production of hot water for process reactions. Repairing steam leaks, minimizing vented steam, ensuring that piping, valves, fittings, and vessels are well insulated, and ensuring that steam traps are well-maintained all can increase energy efficiency in your plant.

Applications

Condensate Heat Recovery

Deaerator Steam

Hot Water Distribution

Radiant Section Walls

Instrumentation & Control

Insulation

Venting

Waste Heat Recovery

Did You Know ..?

Significant tax deductions exist for installing energy-efficient systems in industrial buildings, and these can be claimed by building owners or tenants who make these improvements  to their operations. We assist members with this deduction.

Steam traps fail through either the leakage of steam, or drainage, in which the flow of condensate is blocked, preventing the removal or draining of condensate from the system. Failure rates can be high, and if left unattended a population of steam traps can easily have between 20 and 40% in a failed condition.

Cold Trap Diagnosis

Steam Trap Types

Steam Leaks

Steam Trap Diagnostics

Steam Trap Sizing

Whether you need to upgrade distribution mains, treatment systems, wells, pumps and controls, replace lead service lines or increase elevated or ground storage capacity, we assist Facilities Managers through every stage of the process.

Water Flow

Chilled Water & Condenser Systems

Constant Volume Pumps

Pressure Drop

System Balance

Call Us.

In short, we enhance your system’s capabilities
and the integration of subsystem elements to make
all of it work more efficiently, utilizing fewer resources.

U.S. Power is an industrial energy services company that specializes in the reduction of energy consumption across a broad array of manufacturing and food processing facilities located in Michigan, Ohio, Indiana, Illinois and Wisconsin. In addition, the company publishes a useful curation of power-oriented information from the marketplace, and consolidates it into this concise, twice per month letter known as The Fabulous Power Maven, distributed to Facilities Managers throughout the nation.

While the company prides itself in its diversity, it owns and operates a niche power contracting firm as well, known as U.S. Power Center, LLC. With a core business in and around industrial power equipment, our specialty is in providing, installing and optimizing a full range of state-of-the-art systems, including onsite generation.

The Maven publishes these pearls weekly, or more frequently if we feel like it, because we believe America is already great, and poised to be even greater if we commit to doing our part towards cooling the planet. Publisher Ron Motsch can be reached at (616) 570-9319.

Discover Our

Family of Brands

Our power letter, full of pearls of wisdom from years of contracting experiences, by and for Building Managers and Industrial Contractors.

A searchable database of power and controls resources we’ve either created from within, published from our subscribers, or curated from around The Internet.

Our industrial contracting firm, building, deploying, and managing a suite of the most productive and admired power performance technologies on Earth.

YOUR MORNING GRIN

Life can be tough.  And no one gets out alive. 
But you can enjoy your power systems along the way.  

We foster that enjoyment. 

 

Ron Motsch
(616) 570-9319

Building and Managing a Suite of
The Most Productive and Admired
Industrial Power Systems on Earth

Power Topics

Subscribe to
The Fabulous Power Maven